equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
A Teoria quântica dos campos locais, ou Sistema axiomático Haag-Kastler para a teoria quântica dos campos, ou ainda Teoria quântica dos campos algébrica foi proposta pelos físicos Rudolf Haag e Daniel Kastler em 1964.
A teoria é uma aplicação local da física quântica numa C*-álgebra. Os axiomas desta teoria são definidos em termos algébricos dados por todo conjunto aberto num espaço de Minkowski, e mapeados entre eles.
Definição
Permitindo que Mink seja a categoria de subconjuntos abertos de um espaço de Minkowski M com função inclusão como morfismo. É dado um functor contravariante de Mink para uC*alg, a categoria de C*álgebras unitais, já que todo morfismo em Mink se mapeia para um monomorfismo num uC*alg.
O grupo de Poincaré age continuamente no Mink. Ali existe o produto fibrado desta ação, que é continua na norma operacional da Covariância de Lorentz: .
O espaço de Minkowski possui uma estrutura casual. Logo se um conjunto aberto V se encontra no complemento casual de um conjunto aberto U, então a imagem do mapeamento
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
e
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Comuta se é o complemento casual do conjunto aberto U, então é um isomorfismo.
Um estado com respeito a uma C*-álgebra é uma Função linear positiva com norma unitária. Se nós possuirmos um estado sobre , nós podemos obter o traço parcial e conseguir estados associados com para cada conjunto aberto.
Teoria supersimétrica N = 4 de Yang-Mills (SYM) é um modelo matemático e físico criado para estudar partículas através de um sistema simples, semelhante à teoria das cordas, com simetria conforme. Trata-se de uma teoria simplificada de brinquedos baseada na teoria de Yang-Mills que não descreve o mundo real, mas é útil porque pode servir como campo de prova para abordagens de ataque a problemas em teorias mais complexas.[1] Evidência indica que a teoria supersimétrica de Yang-Mills supersimétrica planar N = 4 é integrável, o que implica que a simetria superconformacional de N = 4 SYM é aumentada por infinitas cargas conservadas.[2]
Lagrange
O Lagrangiano para a teoria é[3]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde e índices i,j = 1, ..., 6 assim como a, b = 1, ..., 4. representa as constantes de estrutura do grupo de calibre específico. representa as constantes de estrutura do grupo R-simetria SU(4),[4] que gira as 4 supersimetrias. Como consequência dos teoremas de não renormalização, essa teoria de campo supersimétrica é de fato uma teoria de campo superconformal.[5]
Em física, teoria de gauge na rede é o estudo de teorias de gauge em um espaço-tempo discreto numa rede.[1] Embora a maioria das teorias de gauge não sejam exatamente solúveis, são de grande utilidade pois podem ser estudadas por simulações computacionais. Espera-se que, executando simulações em rede progressivamente maiores, o comportamento da teoria correspondente no contínuo seja recuperado.
Nas teorias de gauge na rede o espaço-tempo passa por uma rotação de Wick, resultando em um espaço euclidiano, descrito por uma rede hiperretangular com espaçamento igual a entre seus sítios. Os campos de quarks são somente definidos nos sítios da rede. Há problemas com a duplicação de férmion, apesar de tudo. Ver ação de Wilson-Ginsparg. Em vez de um vetor potencial, como no caso contínuo, os campos de gauge são definidas sobre as ligações do retículo e correpondem ao transporte paralelo ao longo da borda que assume valores no grupo de Lie em questão. Daí para simular a cromodinâmica quântica (QCD), para que o grupo de Lie é SU(3), existe uma matriz especial unitária 3 por 3 definida em cada ligação. As faces do retículo são chamadas plaquetas. A ação de Yang-Mills é reescrita usando laços de Wilson sobre plaquetas (isto é simplesmente um "caráter" valorado sobre a composição de variáveis de ligação em torno da plaqueta) de tal forma que o limite formalmente dá a ação de contínuo original.
Mais precisamente, nós temos um retículo com vértices, grafos e faces. Em teoria de retículo, a terminologia alternativa sítios, ligações e plaquetas para vértices, grafos e faces é frequentemente usada. Isto reflete a origem do campo em física do estado sólido. Enquanto que cada grafo não tem orientação intrínseca, para definir as variáveis gauge, nós atribuimos um elemento de um grupo de Lie compacto G a cada grafo uma orientação para ele chamada U. Basicamente, a atribuição para um grafo em uma dada orientação é o grupo inverso da atribuição do mesmo grafo na orientação oposta. Igualmente, as plaquetas não têm orientação intrínseca, mas lhe são dadas temporariamente uma orientação para propósitos computacionais. Dada uma representação irredutível fiel ρ de G, o retículo ação de Yang-Mills é
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
(a soma sobre todos os sítios do retículo do (componente real do) laço de Wilson). Aqui, χ é o "caráter" (traço) e o componente real é redundante se ρ passa a ser uma representação real ou pseudoreal. e1, ..., en são os n grafos do laço de Wilson em sequência. O lado positivo sobre ser real é que se a orientação de um laço de Wilson é trocada, sua contribuição para a ação permanece inalterada.
Há muitas ações de Yang-Mills possíveis sobre o retículo, dependendo sobre qual laço de Wilson for usado a fórmula acima. A mais simples é a ação de Wilson, na qual o laço de Wilson é apenas uma plaqueta. Uma desvantagem da ação de Wilson é que a diferença entre ela e a ação contínua é proporcional ao espaçamento do retículo . É possível usar laços de Wilson mais complexos onde esta diferença é proporcional a , tornando as computações mais precisas. Estas são conhecidas como "ações melhoradas".
Para calcular uma grandeza (tal como a massa de uma partícula) em teoria de retículo gauge, ela deve ser calculada para cada valor possível do campo gauge sobre cada ligação, e então calculada sua média. Na prática isto é impossível. Em vez disso o método de Monte Carlo é usado para estimar a grandeza. Configurações aleatórias (valores de campos gauge) são geradas com probabilidades proporcionais a , onde é a ação de retículo para que a configuração e seja relacionada ao espaçamento do retículo . A grandeza é calculada para cada configuração. O verdadeiro valor da grandeza é então encontrado por tomar-se a média do valor de um grande número de configurações. Para encontrar o valor da grandeza na teoria contínua isto é repetido para vários valores de e extrapolados a .
Teoria do retículo gauge é uma ferramenta importante para cromodinâmica quântica (QCD). A versão discreta da QCD é chamada retículo QCD. O confinamento QCD tem sido apresentado em simulações de Monte Carlo. Confinamento a alta temperatura conduz à formação de um plasma de quarks-glúons.
Teoria do retículo gauge tem-se mostrado exatamente duplas de espuma de spin desde que somente laços de Wilson apareçam na ação sobre plaquetas.
Em física, um termo cinético é a parte do Lagrangeano que é bilinear nos campos (e para os modelos de sigma não lineares, eles não são ainda bilinear), e geralmente contém duas derivadas em função do tempo (ou espaço); no caso dos férmions, o termo cinético geralmente tem apenas uma derivada. A equação de movimento derivada de tal Lagrangiano contém operadores diferenciais que são gerados pelo termo cinético.[1][2]
Na mecânica, o termo cinético é
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Na teoria quântica de campos, os termos cinéticos para campos escalares reais, campo eletromagnético e campo de Dirac[3][4][5][6] são
A termodinâmica quântica é o estudo das relações entre duas teorias físicas independentes: termodinâmica e mecânica quântica.[1][2] As duas teorias independentes tratam dos fenômenos físicos da luz e da matéria. Em 1905, Einstein argumentou que a exigência de consistência entre termodinâmica e eletromagnetismo[3] nos leva à conclusão de que a luz é quantizada obtendo a relação . Este artigo é o início da teoria quântica. Em algumas décadas, a teoria quântica se estabeleceu com um conjunto independente de regras.[4] Atualmente, a termodinâmica quântica trata do surgimento de leis termodinâmicas da mecânica quântica. Ela difere da mecânica estatística quântica na ênfase em processos dinâmicos fora de equilíbrio.[5] Além disso, há uma busca pela teoria para ser relevante para um único sistema quântico individual.[6]
Visualização dinâmica
Existe uma conexão íntima da termodinâmica quântica com a teoria dos sistemas quânticos abertos.[7] A mecânica quântica insere dinâmica na termodinâmica, dando uma base sólida à termodinâmica para tempo finito. A principal premissa é que o mundo inteiro é um grande sistema fechado e, portanto, a evolução do tempo é governada por uma transformação unitária gerada por um hamiltoniano global. Para o cenário combinado do banho do sistema, o Hamiltoniano global pode ser decomposto em:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde é o sistema hamiltoniano, é o banho hamiltoniano e é a interação sistema-banho. O estado do sistema é obtido a partir de um rastreamento parcial sobre o sistema combinado e o banho: . Dinâmica reduzida é uma descrição equivalente da dinâmica do sistema, utilizando apenas operadores do sistema. Assumindo a propriedade de Markov para a dinâmica, a equação básica de movimento para um sistema quântico aberto é a equação de Lindblad (GKLS):[8][9]
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
é uma parte hamiltoniana (Hermitiana) e :
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
é a parte dissipativa que descreve implicitamente através dos operadores do sistema a influência do banho no sistema. A propriedade de Markov impõe que o sistema e o banho não estejam correlacionados o tempo todo . A equação L-GKS é unidirecional e conduz qualquer estado inicial para uma solução em estado estacionário que é invariável da equação do movimento .[7]
A imagem de Heisenberg fornece uma ligação direta para observáveis termodinâmicos quânticos. A dinâmica de um sistema observável representado pelo operador, , tem a forma:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde a possibilidade de que o operador, é explicitamente dependente do tempo, está incluído.
Na mecânica quântica, e especialmente no processamento quântico de informações, a troca de entropia de uma operação quântica , atuando na matriz densidade de um sistema é definida como
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde é a entropia de von Neumann do sistema e um sistema auxiliar purificador fictício depois de serem operados por .[1] Aqui,
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
e
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde na equação acima atua em deixando inalterado.[2]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Comentários
Postar um comentário